AI model 'learns' from patient data to make cancer treatment less toxic
Share

MIT researchers are employing novel machine-learning techniques to improve the quality of life for patients by reducing toxic chemotherapy and radiotherapy dosing for glioblastoma, the most aggressive form of brain cancer.

Glioblastoma is a malignant tumor that appears in the brain or spinal cord, and prognosis for adults is no more than five years. Patients must endure a combination of radiation therapy and multiple drugs taken every month. Medical professionals generally administer maximum safe drug doses to shrink the tumor as much as possible. But these strong pharmaceuticals still cause debilitating side effects in patients.

In a paper being presented next week at the 2018 Machine Learning for Healthcare conference at Stanford University, MIT Media Lab researchers detail a model that could make dosing regimens less toxic but still effective. Powered by a “self-learning” machine-learning technique, the model looks at treatment regimens currently in use, and iteratively adjusts the doses. Eventually, it finds an optimal treatment plan, with the lowest possible potency and frequency of doses that should still reduce tumor sizes to a degree comparable to that of traditional regimens.

In simulated trials of 50 patients, the machine-learning model designed treatment cycles that reduced the potency to a quarter or half of

read more...


Article originally posted at
www.eurekalert.org

Click here for the full story


CategoryAggregator News

© 2017 - LIFE EXTENSION ADVOCACY FOUNDATION
Privacy Policy / Terms Of Use

Powered by MMD