Eureka Alert
Share

IMAGE: Chromosomal aberrations induced by exogenous DNA damage in DDX11 defective cells. view more 

Credit: Takuya Abe

Researchers from Tokyo Metropolitan University and the FIRC Institute of Molecular Oncology (IFOM) in Italy have uncovered a previously unknown function of the DDX11 helicase enzyme. Mutations in the gene which codes for DDX11 are known to be implicated in Warsaw Breakage Syndrome. They showed that DDX11 plays an important role in DNA repair, and functions as a backup to the Fanconi Anemia (FA) pathway, whose malfunction is associated with another life-debilitating condition.

DNA plays a central role in the biological function of the cell, but it is constantly being damaged, both spontaneously and through environmental factors. Failure to successfully repair these lesions can lead to malignant tumors or cancer. Understanding how it is repaired is of the utmost importance; in fact, pioneering work on the subject was recognized with the 2015 Nobel Prize for Chemistry.

Warsaw Breakage Syndrome (WABS) is a genetic disorder; afflicted individuals suffer from mild to severe intellectual disability and growth impairment amongst other potential abnormalities. It was known that mutations in the DDX11 gene in Chromosome 12 in the human genome and the enzyme it codes for,

read more...


Article originally posted at
www.eurekalert.org

Click here for the full story


CategoryAggregator News

© 2017 - LIFE EXTENSION ADVOCACY FOUNDATION
Privacy Policy / Terms Of Use

Powered by MMD