Enzyme's movement may be key to new cancer drugs
Share

IMAGE: The inactive form (left) of the MAPK p38 enzyme moves in an uncoordinated fashion. Once the necessary molecules (blue blob and P symbols) bind, the enzyme becomes active (right) by… view more 

view more 

Credit: Senthil Ganesan, University of Arizona Department of Chemistry and Biochemistry.

Revealing all the steps required to activate an enzyme called a protein kinase may identify new ways to target cancer, according to new University of Arizona-led research.

Not only must the kinase have all needed parts in place, the enzyme must move in the correct manner and at the correct speed to function properly in a cell, the researchers found.

First author Senthil Kumar Ganesan, a UA research assistant professor of chemistry and biochemistry, said kinases are switches that turn certain cellular processes on or off. If a cell’s kinases stopped working, the cell would die.

The UA-led team is the first group to figure out the full pathway for activating a protein kinase, said senior author Wolfgang Peti, who holds the Homer C. and Emily Davis Weed Endowed Chair in Chemistry at the University of Arizona.

“Kinases are one of the major cancer drug targets,” said Peti, who is also a member of the UA BIO5 Institute and the UA Cancer

read more...


Article originally posted at
www.eurekalert.org

Click here for the full story


CategoryAggregator News

© 2017 - LIFE EXTENSION ADVOCACY FOUNDATION
Privacy Policy / Terms Of Use

Powered by MMD