First description of mEAK-7 gene could suggest path toward therapies for cancer

For years, researchers have known that a gene called EAK-7 plays an important role in determining how long worms will live. But it remained unclear whether the gene had a counterpart in humans and – if it did – how that human version would work.

Now, researchers led by UCLA’s Dr. Paul Krebsbach are the first to characterize the mechanism of the human equivalent, which they call mammalian EAK-7, or mEAK-7.

Krebsbach, dean of the UCLA School of Dentistry and a professor of periodontics, led a team that found mEAK-7 regulates the molecular process, or “metabolic pathway,” that dictates cell growth and human development.

The disruption of those processes is part of what causes cancer and other diseases, as well as some neurological disorders. Findings from the study could be a preliminary step toward new therapies that would work by slowing or blocking mEAK-7’s molecular process, which in turn could potentially control the spread and growth of the cells responsible for those diseases.

The research was published in the journal Science Advances.

The researchers began studying EAK-7, the worm gene, in 2013, when Krebsbach was a faculty member at the University of Michigan. Knowing about its important role in


Article originally posted at

Click here for the full story

CategoryAggregator News

Privacy Policy / Terms Of Use

Powered by MMD