Genomic analysis unravels complexities of the most common form of lymphoma and enables personalized treatment
Share

The majority of patients with diffuse large B cell lymphoma (DLBCL) can be treated effectively. However, people whose disease recurs face a shortage of good options, especially because the disease is driven by a complicated mix of genetic alterations. Genomic analysis by scientists at Dana-Farber Cancer Institute and the Broad Institute of MIT and Harvard now offers a better framework for understanding the disease’s many forms, which will help to predict individual patient outcomes and guide personalized treatment.

Analyzing 304 patient samples, the study showed that DLBCL tumors can be divided into five genetic subtypes, says Margaret Shipp, MD, chief of Dana-Farber’s Hematologic Neoplasia division and director of the Lymphoma Program of the Dana-Farber/Harvard Cancer Center.

These genetic subtypes can help in identifying likely therapeutic targets, some of which can be inhibited by drugs that already are approved for other conditions or in clinical trials, says Shipp, who, along with Broad Institute’s Gad Getz, is co-corresponding author on a Nature Medicine paper presenting the work.

“These genetic signatures also clearly suggest that we want to think about using a combination of targeted agents, because in DLBCL, combinations of genetic alterations occur together in specific subtypes,” she says.

DLBCL is

read more...


Article originally posted at
www.eurekalert.org

Click here for the full story


CategoryAggregator News

© 2017 - LIFE EXTENSION ADVOCACY FOUNDATION
Privacy Policy / Terms Of Use

Powered by MMD