Inflammatory Signaling Reduces Pancreatic Islet Cell Replication in Aging

Aging is marked by rising chronic inflammation and a decline in many aspects of tissue maintenance, such as stem cell activity, and willingness of somatic cells to replicate. Chronic inflammation appears to disrupt regenerative processes, but there are many distinct mechanisms involved, varying by tissue type, and present understanding is far from complete. Researchers here investigate one narrow slice of the problem in the pancreas in zebrafish, finding that beta cells, important to metabolic function due to their control of insulin, reproduce less readily in old individuals due to greater inflammation.

rising chronic inflammationstem cell activitysomatic cellsdisrupt regenerative processespancreaszebrafishbeta cellsinsulin

A hallmark of aging is the reduction in cellular renewal and proliferation across different tissues and organs. The insulin producing beta cells, which reside in the islets of Langerhans, provide a good model to study regulators of cellular aging. Whereas young beta-cell are highly proliferative and increase rapidly in number from the prenatal phase until early stages of development in mammals, beta-cell proliferation becomes dramatically reduced in adults.

Previous studies have indicated that both extrinsic factors, such as the vasculature, and intrinsic factors, such as chromatin modifications, may influence the age-related changes in beta-cells. For example, rejuvenating the beta-cell environment by


Article originally posted at

Click here for the full story

Privacy Policy / Terms Of Use

Powered by MMD