Inhibiting metabolism found to be effective in treating aggressive form of lung cancer


Researchers from UCLA and Long Beach Memorial Medical Center have found that two targeted therapies could be more effective if used in combination to treat squamous cell carcinomas of the lung. The two drugs, MLN128 and CB-839, individually target the metabolism of key nutrients glucose and glutamine, respectively, prohibiting the cancer from switching metabolic gears between glucose (a simple sugar) and glutamine (an amino acid) to tap vital sources of energy. This switch enables the cancer cells to adapt their metabolism and evade treatments.


Non-small cell lung cancer makes up about 85 percent of all lung cancers, and within this population about 20 percent of patients get squamous cell carcinomas. These carcinomas are aggressive and highly resistant to most current therapies — including chemotherapy and targeted therapies. Although squamous cell carcinomas can rapidly adapt their metabolism to evade therapies, not much is understood about the mechanisms governing metabolic adaptation in these tumors. Because people with this disease have worse survival odds than those with other subtypes of non-small cell lung cancer, researchers have been working to better understand the mechanisms that drive these metabolic adaptations in order to improve treatment.


Through positron emission tomography, or PET,


Article originally posted at

Click here for the full story

CategoryAggregator News

Privacy Policy / Terms Of Use

Powered by MMD