Nanoparticle therapeutic restores function of tumor suppressor in prostate cancer

Boston, MA — Think of it as a cancer therapy zag instead of a zig. While many groups are developing cancer therapies to target proteins and pathways that are highly active in cancer cells, a team of investigators from Brigham and Women’s Hospital and Boston Children’s Hospital, with collaborators at Memorial Sloan Kettering Cancer Center, is taking a new approach that allows them to go after what is not there. Loss of tumor suppressors – genes such as PTEN and p53 – help cancer grow unchecked. But targeting proteins that have been lost rather than gained in cancer has been challenging. The Boston-based collaborative team has leveraged advances in nanotechnology and the unique properties of mRNA to inhibit tumor growth in preclinical models of prostate cancer by targeting PTEN. The results of the team’s efforts are published this week in Nature Biomedical Engineering.

“Our approach represents the convergence of nanotechnology and biology,” said co-corresponding author Jinjun Shi, PhD, faculty of the Center for Nanomedicine and Associate Professor of Anesthesia at BWH. “Loss or mutation of PTEN has been observed in about half of metastatic castration-resistant prostate cancers and in many other human cancers, yet the reconstitution of functional PTEN


Article originally posted at

Click here for the full story

CategoryAggregator News

Privacy Policy / Terms Of Use

Powered by MMD