Eureka Alert
Share

IMAGE: Single molecule fluorescence spectroscopy makes the binding principle of unstructured proteins visible. view more 

Credit: Christoph Schumacher, dunkelweiss

Proteins are among the most important biomolecules and are the key mediators of molecular communication between and within cells. For two proteins to be able to bind, specific regions of their three-dimensional structure have to exactly match one another – like a key that fits into a lock. The structure of proteins is extremely important for their functioning and for triggering the required response in cells. Now researchers at the University of Zurich, together with colleagues from Denmark and the US, have discovered that unstructured proteins can also have ultra-high-affinity interactions.

Like boiled noodles in water

One of these proteins is histone H1, which as a component of chromatin is responsible for DNA packaging. Its binding partner, prothymosin α, acts as a kind of shuttle that deposits and removes the histone from the DNA. This process determines whether or not genes in specific parts of the DNA can be read. Both proteins are involved in several regulatory processes in the body, such as cell division and proliferation, and therefore also play a role when it comes to a number of

read more...


Article originally posted at
www.eurekalert.org

Click here for the full story


CategoryAggregator News

© 2017 - LIFE EXTENSION ADVOCACY FOUNDATION
Privacy Policy / Terms Of Use

Powered by MMD