Researchers develop process producing cell-sized lipid vesicles for cell-cell synaptic therapies
Share

IMAGE: (Left) Schematic of NL-2 functionalized GUV interacting with neurexins on the surface of pancreatic β cells. (Right) Illustration of clustering effect during the interaction GUV – cell interaction, resulting in… view more 

Credit: Professor Abraham Lee, Ph.D.

A team of researchers at the University of California in Irvine, California has demonstrated a novel process to produce cell-sized lipid vesicles (CLVs) from microfluidically generated double emulsion templates by investigating the interfacial parameters that control double emulsion stability for storage, and their subsequent dewetting to form multisomes or GUVs (subsets of CLVs). A report detailing this latest development was published in the December 2017 issue of the journal TECHNOLOGY.

Cell-sized lipid vesicles (CLVs) have long been of particular interest for many therapeutic, biosensing, and artificial cell applications, as the lipid bilayer mimics a cell membrane and is a very versatile and selective physical boundary, which can be easily functionalized to meet a variety of needs. This is especially relevant for emerging applications in medicine, where functional particles can be utilized to elicit a therapeutic cellular response, and in biosensing, where small reaction containers can be used to detect even single molecules of a specific target. Unfortunately, the use of CLVs

read more...


Article originally posted at
www.eurekalert.org

Click here for the full story


CategoryAggregator News

© 2017 - LIFE EXTENSION ADVOCACY FOUNDATION
Privacy Policy / Terms Of Use

Powered by MMD