RUDN biochemists found out how ROS affect cisplatin resistance in ovarian cancer cells
Share

IMAGE: The mechanism of oxidative stress. view more 

Credit: Courtesy of Allen Dressen

Long-term use of anti-cancer drugs treatment may lead to the development of multiple drug resistance reducing the efficiency of chemotherapy. Scientists are aware of several mechanisms for drug resistance development in tumor cells. They are to a great extent associated with the activation of proteins that get medicinal drugs out of cells, as well as with changes in the genes controlling cell survival and programmed cell death (apoptosis). One of the least studied mechanisms of drug resistance development is connected with the influence of reactive oxygen species (ROS) that are formed during cell life and can destroy organic molecules.

RUDN biochemists studied the mechanism of drug resistance development in ovarian cancer cells under treatment with cisplatin. The researchers found out that the process was connected with increased expression (production of proteins coded by DNA molecules) of genes of key antioxidant enzymes (i.e. destroying ROS): Mn-superoxide dismutase, catalase, glutathione peroxidase-1, hemoxygenase-1, as well as reduced expression of the enzyme NADPH-oxidase, which is responsible for ROS generation in the cell.

In the normal state there is a balance between the formation and destruction of ROS. Any changes in

read more...


Article originally posted at
www.eurekalert.org

Click here for the full story


CategoryAggregator News

© 2017 - LIFE EXTENSION ADVOCACY FOUNDATION
Privacy Policy / Terms Of Use

Powered by MMD