Scientists tackle the aberrant epigenetic programming underlying childhood cancers
Share

Several childhood cancer cell types show features of immature neural cells, and there is evidence suggesting that these tumors may arise from neural crest stem cells that underwent abnormal changes during embryonic development. One such cancer is Ewing sarcoma. Although combinatorial treatment protocols encompassing chemotherapy, surgery, and radiotherapy have improved outcomes, many patients still suffer from a poor prognosis.

Typically, the pathogenesis of Ewing sarcoma includes fusion of the EWS and FLI-1 genes. The resulting EWSR1-FLI-1 protein induces aberrant epigenomic reprogramming, which alters acetylation and methylation, leading to chromatin remodeling. Chromatin is a structurally condensed form of DNA, and its condensation state regulates gene expression patterns epigenetically. Highly condensed chromatin can suppress the expression of genes that control differentiation, thereby keeping cancer cells in a poorly differentiated, stem cell-like state that facilitates tumor progression.

A team of researchers at the Cancer and Neurobiology Laboratory and the Pediatric Oncology Service at the Federal University of Rio Grande do Sul (UFRGS) and its university hospital (Hospital de Clínicas de Porto Alegre, HCPA), and the Children’s Cancer Institute (Instituto do Câncer Infantil, ICI), in Porto Alegre, Brazil, in collaboration with Dr. Carol J. Thiele, Deputy Chief of the Pediatric Oncology Branch at

read more...


Article originally posted at
www.eurekalert.org

Click here for the full story


CategoryAggregator News

© 2017 - LIFE EXTENSION ADVOCACY FOUNDATION
Privacy Policy / Terms Of Use

Powered by MMD