Scripps Research study provides new clues to improving chemotherapies
Share

IMAGE: The structure of the protein encoded by the tnmS3 gene. view more 

Credit: Shen Lab/Scripps Research

JUPITER, FL – June 21, 2018 – About half of all drugs, ranging from morphine to penicillin, come from compounds that are from–or have been derived from–nature. This includes many cancer drugs, which are toxic enough to kill cancer cells.

So how do the organisms that make these toxic substances protect themselves from the harmful effects? Scientists on the Florida campus of Scripps Research have uncovered a previously unknown mechanism–proteins that cells use to bind to a toxic substance and sequester it from the rest of the organism.

“Thanks to this discovery, we now know something about the mechanisms of resistance that’s never been known before for the enediyne antitumor antibiotics,” says study senior author Ben Shen, PhD, professor and co-chair of the Scripps Research Department of Chemistry.

The work has important implications for understanding how human cancer cells develop resistance to natural product-based chemotherapies. Furthermore, the microbiome may play a role in drug resistance. The study was published today in the journal Cell Chemical Biology.

“This mechanism could be clinically relevant for patients getting these drugs, so it’s very important to

read more...


Article originally posted at
www.eurekalert.org

Click here for the full story


CategoryAggregator News

© 2017 - LIFE EXTENSION ADVOCACY FOUNDATION
Privacy Policy / Terms Of Use

Powered by MMD