Study identifies new molecular target for treating deadly lung disease IPF
Share

IMAGE: In this microscopic photo of tissue from mouse lung with idiopathic pulmonary fibrosis (IPF), extensive fibrosis and collagen deposits (shown in red) have extensively infiltrated the tissue. Researchers at Cincinnati… view more 

Credit: Cincinnati Children’s

CINCINNATI — Scientists searching for a therapy to stop the deadly and mostly untreatable lung disease, idiopathic pulmonary fibrosis (IPF), found a new molecular target that slows or stops the illness in preclinical laboratory tests.

A research team at Cincinnati Children’s Hospital Medical Center reports its data in the journal Cell Reports. It found that a gene called FOXF1 inhibits the IPF disease process, which includes extensive scarring in lung connective tissues, hyper-production of harmful cells called myofibroblasts and excessive lung inflammation.

Their data show human lungs from IPF patients and mouse models of IPF lack FOXF1 in myofibroblasts. But cells lacking FOXF1 also exhibit overexpression of a related gene called FOXM1, which drives lung scarring and inflammation.

“The exact cause of IPF is unknown and effective treatments are needed. This study identifies a novel anti-fibrotic drug target that inhibits pulmonary fibrosis in our preclinical models,” said lead investigator Tanya Kalin, MD, PhD, Division of Pulmonary Biology. “We are developing different therapeutic approaches

read more...


Article originally posted at
www.eurekalert.org

Click here for the full story


CategoryAggregator News

© 2017 - LIFE EXTENSION ADVOCACY FOUNDATION
Privacy Policy / Terms Of Use

Powered by MMD