Taming a fatal blood cancer
Share

IMAGE: This microscopic image shows MLL-AF9 leukemia cells. Scientists who conducted extensive genetic and biochemical tests on the cells report in the Journal of Experimental Medicine identifying a potential treatment target… view more 

Credit: Cincinnati Children’s

CINCINNATI – When a dangerous defect on chromosome 11q23 disrupts the genetic programming of blood cells, it causes an aggressive and deadly blood cancer called acute myeloid leukemia (AML). With a dismal survival rate of 20-40 percent and desperate need for better treatments, scientists at Cincinnati Children’s report finding a potential therapeutic target for AML in preclinical laboratory tests on donated human cells and mice.

When scientists blocked the target molecule on human AML cells in combination with other known AML treatments, the cancerous blood cells died and were replaced by regenerating, healthy white blood cells, according to principal investigator H. Leighton Grimes, PhD, and study first author Sara Meyer, PhD, a former member of the Grimes laboratory.

The target molecule is F-box protein S-phase kinase-associated protein 2 (Skp2). Skp2 degrades another protein called p27Kip1 that is important to the formation of healthy blood cells.

Published online in the Journal of Experimental Medicine, the study’s findings are not ready for clinical application, according

read more...


Article originally posted at
www.eurekalert.org

Click here for the full story


CategoryAggregator News

© 2017 - LIFE EXTENSION ADVOCACY FOUNDATION
Privacy Policy / Terms Of Use

Powered by MMD