Eureka Alert
Share

IMAGE: An artistic rendering of the mechanism responsible for relocalization of heterochromatic repair sites during homologous recombination. A nuclear myosin walks along a dynamic nuclear actin filament, carrying broken DNA for… view more 

Credit: Yekaterina Kadyshevskaya, USC

The cell has its own paramedic team and emergency room to aid and repair damaged DNA, a new USC Dornsife study reveals.

The findings are timely, as scientists are delving into the potential of genome editing with the DNA-cutting enzyme, CRISPR-Cas9, to treat diseases or to advance scientific knowledge about humans, plants, animals and other organisms, said Irene Chiolo, Gabilan Assistant Professor of biological sciences at the USC Dornsife College of Letters, Arts and Sciences.

Genome editing has arrived before scientists have thoroughly studied the significance and impact of DNA damage and repair on aging and disease, such as cancer. Chiolo’s work has been revealing more about those processes.

For the study published today in Nature, Chiolo and her team of researchers at USC Dornsife, using fluorescent markers, tracked what happened when DNA was damaged in fruit fly cells and mouse cells. They saw how the cell launches an emergency response to repair broken DNA strands from a type of tightly-packed DNA,

read more...


Article originally posted at
www.eurekalert.org

Click here for the full story


CategoryAggregator News

© 2017 - LIFE EXTENSION ADVOCACY FOUNDATION
Privacy Policy / Terms Of Use

Powered by MMD