Tumor suppressor protein targets liver cancer
Share

LA JOLLA–(March 29, 2018) Salk Institute scientists, together with researchers from Switzerland’s University of Basel and University Hospital Basel, discovered a protein called LHPP that acts as a molecular switch to turn off the uncontrolled growth of cells in liver cancer. The tumor suppressor, which could be useful as a biomarker to help diagnose and monitor treatment for liver cancer, could also be relevant for other cancer types. The work appeared in print in the journal Nature on March 29, 2018, and adds to the growing body of knowledge about cellular processes that either promote or prevent cancer.

“I think we’ve discovered a new control mechanism for cell proteins that, when disrupted, could be a driver for cancer,” says Tony Hunter, Salk’s American Cancer Society Professor and an author on the new paper. “It’s exciting because it offers the possibility of new therapeutics or new diagnostics for a cancer that’s basically untreatable–liver cancer–and potentially others, as well.”

Hunter is known for his 1979 discovery of a molecular signaling process called tyrosine phosphorylation. In this process, proteins called kinases attach the chemical phosphate–like a sticky note–to the amino acid tyrosine in target proteins. But, when dysfunctional, tyrosine phosphorylation can also

read more...


Article originally posted at
www.eurekalert.org

Click here for the full story


CategoryAggregator News

© 2017 - LIFE EXTENSION ADVOCACY FOUNDATION
Privacy Policy / Terms Of Use

Powered by MMD