Using mathematical modeling and evolutionary principals important in treatment decisions
Share

TAMPA, Fla. – Cancer patients are commonly treated with the maximum dose they are able to withstand that does not cause too many toxic side effects. However, many patients become resistant to these treatments and develop cancer recurrence. Researchers at Moffitt Cancer Center are using mathematical modeling based on evolutionary principals to show that adaptive drug treatments based on tumor responses to prior treatment are more effective than maximum-tolerated dose approaches for certain tumor situations. Their new study discussing this approach was published in online ahead of print in Cancer Research.

Standard cancer treatments and most clinical trials are based on the notion that physicians need to treat patients with the highest dose of a drug possible to kill the most cancer cells in the shortest amount of time. But often, tumor cells manage to find ways to thrive by activating survival mechanisms.

“An evolutionary flaw in this maximum-tolerated dose strategy is the assumption that resistant populations are not present prior to therapy. It is now clear that cancer cells can be insensitive even to treatment that they have never seen before,” explained study author Jill Gallaher, Ph.D., an applied research scientist in the Department of Integrated Mathematical Oncology

read more...


Article originally posted at
www.eurekalert.org

Click here for the full story


CategoryAggregator News

© 2017 - LIFE EXTENSION ADVOCACY FOUNDATION
Privacy Policy / Terms Of Use

Powered by MMD