Eureka Alert
Share

IMAGE: A molecular mechanism deciphered: Once activated, e.g. through DNA damage, the enzyme PARP-1 forms the biopolymer PAR (poly(ADP-ribose)). PAR, in turn, initiates binding to the tumour-suppressor protein p53 in the… view more 

Credit: Aswin Mangerich, University of Konstanz

Achievement in the field of cancer research: Biologists and chemists at the University of Konstanz decipher a molecular mechanism of the cell with relevance for the development of cancer and the fight against that disease. Particularly important is the interaction between the tumour-suppressor protein p53, known as the “guardian of the genome”, and the enzyme PARP-1, the “caretaker of the genome”. The research project was carried out in collaboration with the University of Ulm and the Karlsruhe Institute of Technology (KIT), and the findings were published in the prestigious scientific journal Nucleic Acids Research (NAR) on 25 January 2018.

Every single day, internal and external influences such as metabolic processes, inflammatory reactions, environmental toxins and radiation cause thousands of random damages to the genetic material (DNA) of every cell of the human body. If the cell cannot “repair” these DNA damages in time, mutations and the development of cancer might be the result. Normally, if a cell is at risk

read more...


Article originally posted at
www.eurekalert.org

Click here for the full story


CategoryAggregator News

© 2017 - LIFE EXTENSION ADVOCACY FOUNDATION
Privacy Policy / Terms Of Use

Powered by MMD